Targeting Uplift

Springer
SKU:
9783030226244
|
ISBN13:
9783030226244
$118.37
(No reviews yet)
Condition:
New
Usually Ships in 24hrs
Current Stock:
Estimated Delivery by: | Fastest delivery by:
Adding to cart… The item has been added
Buy ebook
This book explores all relevant aspects of net scoring, also known as uplift modeling: a data mining approach used to analyze and predict the effects of a given treatment on a desired target variable for an individual observation. After discussing modern net score modeling methods, data preparation, and the assessment of uplift models, the book investigates software implementations and real-world scenarios. Focusing on the application of theoretical results and on practical issues of uplift modeling, it also includes a dedicated chapter on software solutions in SAS, R, Spectrum Miner, and KNIME, which compares the respective tools. This book also presents the applications of net scoring in various contexts, e.g. medical treatment, with a special emphasis on direct marketing and corresponding business cases. The target audience primarily includes data scientists, especially researchers and practitioners in predictive modeling and scoring, mainly, but not exclusively, in the marketing context.


  • | Author: René Michel, Igor Schnakenburg, Tobias Von Martens
  • | Publisher: Springer
  • | Publication Date: Sep 20, 2019
  • | Number of Pages: 384 pages
  • | Language: English
  • | Binding: Hardcover
  • | ISBN-10: 3030226247
  • | ISBN-13: 9783030226244
Author:
René Michel, Igor Schnakenburg, Tobias Von Martens
Publisher:
Springer
Publication Date:
Sep 20, 2019
Number of pages:
384 pages
Language:
English
Binding:
Hardcover
ISBN-10:
3030226247
ISBN-13:
9783030226244